

OCEAN SQUARE, SAUNDERSFOOT

Ground Investigation Geotechnical Report

Report No. G40102 February 2018

DOCUMENT CONTROL			
Contract Name:	Ocean Square, Saundersfoot		
Contract Reference:	G40102		
Report Type:	Ground Investigation Report		
Report Reference:	G40102/IR		
Date of Report Production:	February 2018		
Client:	Saundersfoot Harbour		

Version:	Date:	Prepared by:	Checked by:	Approved by:	
Draft Issue 13/02/18	J. Phillips	P. Darby	J. Stark		
	Mullips	All hy	Aten Start		
		Engineering Geologist B.Sc.(Hons). M.SC., FGS	Senior Engineering Geologist B.Sc. (Hons), M.Sc., C.Geol., FGS	Technical Director B.Sc.(Hons)., C.Geol., FGS	
Disclaimer: Quantum Geotechnical Limited has prepared this report in accordance with the instructions of the above named Client for their sole and specific use. Any third parties who may use the information contained herein do so at their own risk.					

CONTENTS

0.0	FOREWORD	4
1.0	INTRODUCTION	5
1.1	General	5
1.2	Purpose of Ground Investigation	5
1.3	Scope of work	5
2.0	SITE DETAIL	6
2.1	Site Description	6
2.2	Published Geology	6
2.4	Topography	7
3.0	FIELDWORK	8
3.1	General	8
3.2	Exploratory Hole Locations	8
3.3	Hand Excavated Pits	88 Q
3.5	In-Situ Testing	10
4.0	LABORATORY TESTING	11
4.1	General	11
4.2	Geotechnical Laboratory Testing	
4.3	Geo-Environmental Laboratory Testing	
5.0	GROUND CONDITIONS ENCOUNTERED	13
5.1	Overview of strata encountered	
5.2 5.3	Groundwater Conditions	13
5.4	Visual & Olfactory Evidence of Soil Contamination	
5.5	Visual & Olfactory Evidence of Groundwater & Surface Water Contamination	13
6.0	GEOTECHNICAL ENGINEERING APPRAISAL	14
6.1	General	14
6.2	Engineering Properties of Strata	
6.4	Foundation Assessment	
7.0	GEO-ENVIRONMENTAL CONSIDERATIONS	17
7.1	General	17
7.2	Human Health Risk Assessment Criteria	17
7.3 7 4	Pre-Intrusive Investigation Conceptual Site Model	
7.4 7.5	Review of Conceptual Site Model	
8.0	REFERENCES	

APPENDICES

APPENDIX I – SITE PLANS	I
APPENDIX II – HAND EXCAVATED PIT LOGS	
APPENDIX III – MACHINE EXCAVATED TRIAL PIT LOGS	
APPENDIX IV – TRL-DCP CBR RESULTS	IV
APPENDIX V – GEOTECHNICAL AND GEOENVIRONMENTAL LABORATORY TEST RESULTS	: v

0.0 FOREWORD

The following Conditions and Notes on Site Investigation Procedures should be read in conjunction with this report.

0.1 General

Recommendations made and opinions expressed in the report are based on the strata observed in the excavations, together with the results of site and laboratory tests. No responsibility can be held for conditions which have not been revealed by the trial pits or which occur between trial pit holes. Whilst the report may suggest the likely configuration of strata, both between trial pits and below the maximum depth of investigation, this is only indicative and liability cannot be accepted for its accuracy.

Unless specifically stated, no account has been taken of possible subsidence due to mineral extraction below or close to the site.

0.2 Investigation Procedures

Rotary cored boreholes, window sampling and Trial pitting techniques for ground investigation have been employed within the project. All trial pit operations, sampling and logging of soils, rocks and in-situ testing complies with the recommendations of the British Code of Practice BS 5930: 2015 'Site Investigations', British Code of Practice BS 10175: 2011 +A1:2013 'Investigation of Potentially Contaminated Sites' and BS 1377: 1990, 'Methods of Test for Soils for Engineering Purposes'.

0.3 Routine Sampling

Representative bulk, disturbed and environmental samples of the different strata. All samples are returned from site to QGL's laboratory for controlled storage within 24 hours of sampling to await test scheduling/requirements.

0.4 In-Situ Testing, Surveying & Instrumentation

In-situ testing comprised:

- Environmental and Geotechnical laboratory testing
- TRL DCP testing
- Soakaway testing

0.5 Groundwater

Where possible, the depth of entry of any influx of groundwater is recorded during the course of excavation or boring operations. The rate of inflow into the excavation or borehole is monitored during the course of the excavation or during boring procedures. Upon encountering any water strikes, work is temporarily halted and the water levels monitored for a standard twenty-minute period recording the change in water level at the end of the twenty minutes.

Groundwater conditions observed in the excavations are those appertaining to the period of investigation. It should be noted, however, that groundwater levels are subject to diurnal, seasonal and climatic variations and can also be affected by drainage conditions or other causes.

0.6 Retention of Samples

After satisfactory completion of all the scheduled laboratory tests on any sample, the remaining material is discarded. Further to notifying the Engineer/ Client with one week's notice all soil and/or rock samples not tested will be discarded 28 days after submission of the approved final report.

1.0 INTRODUCTION

1.1 General

Upon the instructions of the Client, Saundersfoot Harbour, Quantum Geotechnical Limited (QGL) was commissioned to undertake a Ground Investigation for the proposed development at the Barbecue, Ocean Square, Saundersfoot Harbour.

1.2 Purpose of Ground Investigation

The purpose of the Ground Investigation is to allow a site-specific geotechnical and environmental assessment of existing ground conditions, to aid with the foundation design and identify any other potential geotechnical and environmental issues that may be present within the shallow ground on site. The investigation works / techniques comprised of a series of hand dug and machine excavated trial pits with soakaway testing and TRL probes around the Barbecue building and picnic area adjacent, accompanied with environmental and geotechnical sampling.

1.3 Scope of Work

The general scope of work undertaken in the preparation of this assessment was as follows:

- Conduct an intrusive ground investigation with the aim of identifying the underlying ground conditions targeting the issues that could potentially impact the proposed development.
- Carry out laboratory testing to gain geotechnical and environmental data.
- Provide an interpretative report presenting an analysis of the available information and offering recommendations on site suitability for the proposed development with regards to geotechnical parameters and environmental/human health risks.

General notes on the techniques employed by Quantum Geotechnical are described in the Foreword together with the limitations inherent in carrying out ground investigation work.

2.0 SITE DETAIL

2.1 Site Description

The area under investigation is located approximately 50m west of Saundersfoot Beach and 120m north west of Saundersfoot Harbour along Cambrian Place. The site of the proposed development is situated around the current Barbecue building and adjacent grassed picnic area.

The proposed development site involves extending the current Barbecue building structure outward into the grassed picnic area in the form of a lightweight framed structure.

The approximate National Grid Reference of the site is E: 213642 N: 204820. (see site location plan in Appendix I) with the nearest address being 4 Cambrian Place, Saundersfoot SA69 9ER. The area under investigation is outlined for ease of reference in Figure 1 below;

Figure 1: Site location indicating area under investigation. Not to Scale © Ordnance Survey

2.2 Published Geology

A number of geological sources are available from published geological maps, to stratigraphy data and maps available online. The following sections summarise the information gathered from these sources.

2.2.1 Superficial Deposits

The published geological map covering the site, British Geological Survey (BGS) Sheet 228 'Haverfordwest' (drift edition) shows no superficial deposits to be recorded across the site.

2.2.2 Solid Geology

Bedrock beneath the site is shown to be mudstone, siltstone and sandstone of the South Wales Middle Coal Measures Formation of the Carboniferous Period.

2.2.3 Structural Geology

The closest fault to the site is mapped 25m to the south and trends west to east.

2.3 Hydrology

There is a river to the south of the site that flows into Saundersfoot Harbour. The site is also approximately 50m west to the sea front, adjacent to Saundersfoot Bay

2.4 Topography

The site is relatively flat, with the BBQ building itself located to the northern end.

3.0 FIELDWORK

3.1 General

The fieldwork comprising Machine Excavated Trial Pits with soakaway testing, Hand Excavated Pits, DCP by TRL Probes were undertaken on the 8th and 9th of January. Each location under investigation was fully CAT ('Cable Avoidance Tool') scanned prior to breaking ground. Site supervision and attendance by an Engineering Geologist from Quantum was provided on all aspects of the site works. Safe digging practices in accordance with HS(G)47 were employed when breaking and excavating grounds with all traceable services demarcated prior to works commencing.

A summary of the fieldworks is outlined below;

- 4 No. Trial Pits (TP1 TP4)
- 3 No. DCP TRL probes (TRL1 TRL3)
- 1 No. Soakaway Test
- 3 No. Hand Excavated Pits (HP1 HP3)

3.2 Exploratory Hole Locations

The exploratory hole locations were set out by a QGL Engineering Geologist, positioned to establish relevant ground conditions across the proposed development site.

3.3 Hand Excavated Pits

The fieldworks were undertaken on the 8th and 9th of January and comprised of 3No. Hand Pits, excavated using insulated hand digging tools. Termination depths are detailed in Table 1.

Trial Pis/ DCP TRL Probe I.D.	Termination Depth (mbgl)	Comments
HP01	1.20	Terminated due to max depth achieved
HP02	0.65	Terminated due to refusal
HP03	0.90	Terminated due to refusal

Table 1: Termination depth of Trials Pits

The excavation of Hand Pits allows direct sampling of the near surface deposits for identification purposes, as well as assessment of any salient features and Made Ground or disturbed ground. The Hand Pits were logged in accordance with BS5930:2015; BS EN ISO 14688-1:2002 and BS EN ISO 14688-2:2004, and supervised at all times by an Engineering Geologist from QGL. All of the hand pits were backfilled with compacted layers of arisings upon completion with suitable surface reinstatement where required. A complete set of engineer's Hand Pit logs are presented in Appendix II. No Groundwater was encountered within the hand pits.

The sequence of deposits encountered during the investigation is detailed within the Engineering Geologist's logs presented within Appendix II and summarised in Table 2.

Strata Encountered	Elevation at base of strata (mbgl)			
	HP1	HP2	HP3	
Topsoil			0.05	
Made Ground	+1.20	+0.65	+0.90	

+ - Base of strata not proven

-- Strat note encountered

The ground conditions identified in the Hand Pit undertaken on the northern side of the building comprised a layer of Topsoil. The other two pits solely comprised Made Ground from surface. The base of the Made Ground material was not found due to refusal on obstruction or maximum depth achieved.

A complete set of Engineer's Logs for the hand excavation pits are presented in Appendix II.

3.4 Machine Excavated Trial Pits

4 No. Trial Pits (TP1-TP4) were excavated using an 3-tonne tracked excavator at locations shown on the exploratory hole location plan. The purpose of the pits was to establish existing ground conditions.

This method of investigation allows direct sampling of the near surface deposits for identification purposes, as well as assessment of any salient features and Made Ground or disturbed ground. The Trial Pits were logged in accordance with BS5930:2015; EN ISO 14688-1:2002 and BS EN ISO 14688-2:2004, and supervised at all times by an Engineering Geologist from QGL.

Details of the Trial Pits, including final depths in metres below ground level (mbgl) are provided in Table 3 below:

Exploratory Hole ID	Termination Depth (mbgl)	Termination Strata	Reason for Termination
TP1	1.50	Made Ground	Terminated due to significant instability
TP2	1.70	Made Ground	Terminated due to significant instability
TP3	1.30	Made Ground	Terminated due to significant instability
TP4	1.40	Made Ground	Terminated due to significant instability

Table 3: Trial Pit Termination Depth

A complete set of Engineering Geologist's Machine Excavated Trial Pit Logs are presented within Appendix III.

3.5 In-Situ Testing

3.5.1 TRL DCP Probes

3No. TRL DCP probes were carried out in total, as TRL1, TRL2 and TRL3 undertaken at the specified positions within the existing grassed picnic area adjacent to the Barbecue building. The UK Transport Research Laboratory (TRL) Dynamic Cone Penetrometer (DCP) is an instrument designed for rapid insitu measurement of the structural properties of existing road pavements constructed with unbound materials. Continuous measurements can be made down to a depth of approximately 900mm. Where pavement layers have different strengths, the boundaries can be identified and the thickness of the layer identified. The equipment comprises an 8 kg weight dropping mass through a height of 575 mm, Anvil with driving rod, Penetration rod with 60°, 20 mm dia. Cone and Spanners, Tommy bar.

Correlations between the results of the DCP test and California Bearing Ratio (CBR) can be made. The correlations allow the rapid assessment of in-situ CBR values. The results of the DCP test results can be presented in the form of a continuous CBR vs Depth profile. As shown in the results in Appendix IV

3.5.2 Soakaway Tests

A single Soakaway test was undertaken within selected Trial Pit TP01 to assess the suitability of the strata for use as a drainage solution. The tests were undertaken in accordance with BRE Digest 365 (Revised 2016) and involves filling the trial pit with water and measuring the time elapse whilst the water level drops within the pit. The soakaway could not build a sufficient head of water due to a rapid outflow.

3.5.3 Soil Sampling

Geotechnical bulk and disturbed samples were taken where required within the superficial deposits for strata identification and laboratory testing purposes. In addition, environmental samples were taken for laboratory testing. All samples are returned from site to Quantum's Laboratory for controlled storage within 24 hours of sampling to await test scheduling/ requirements. Sample type and sample depth are all recorded on the Engineering Geologist's Exploratory Hole Logs found within the appropriate Appendix.

4.0 LABORATORY TESTING

4.1 General

The laboratory testing was scheduled by Quantum and comprised geotechnical and geo-chemical testing on selected soil samples obtained during the investigation.

4.2 Geotechnical Laboratory Testing

All the geotechnical soil testing was carried out in accordance with the procedure stipulated in the various sections of BS 1377:1999 Parts 1 - 9 Methods of test for soils for civil engineering purposes. Table 4 details the tests undertaken.

Table 4: Geotechnical Tests Undertaken

Type of Test	No. of Tests
BRE SD1 - Brownfield	2

A full set of geotechnical laboratory test certificates are provided within Appendix V

4.3 Geo-Environmental Laboratory Testing

Geo-Environmental testing was carried out on selected soil samples gained from the ground investigation as shown in Table 5 below. Please note that no groundwater was encountered during the investigation. The purpose of the testing is to gain a holistic view of any raised levels of contaminants that may exist onsite based on the historic, present day and future land use.

Table 5: Geo-Environmental tests undertaken on soil samples

Analytical Parameter (Soil Analysis)	Accreditation Status	No of Tests	Analytical Parameter (Soil Analysis)	Accreditation Status	No of Tests
Asbestos in Soil	ISO 17025	4	Boron (water soluble)	MCERTS	4
Ge	eneral		Cadmium (aqua regia extractable)	MCERTS	4
pH - Automated	MCERTS	6	Chromium (aqua regia extractable)	MCERTS	4
Total Cyanide	MCERTS	4	Copper (aqua regia extractable)	MCERTS	4
Water Sol. Sulphate as SO4	MCERTS	5	Lead (aqua regia extractable)	MCERTS	4
Organic Matter	MCERTS	4	Mercury (aqua regia extractable)	MCERTS	4
Chromium III	MCERTS	4	Nickel (aqua regia extractable)	MCERTS	4
Chromium Hexavalent (VI)	MCERTS	4	Selenium (aqua regia extractable)	MCERTS	4
Total Phenols		Vanadium (aqua regia extractable)	MCERTS	4	
Total Phenols (monohydric)	MCERTS	4	Zinc (aqua regia extractable)	MCERTS	4
Specia	ated PAHs		Petroleum Hydrocarbons		
Naphthalene	MCERTS	4	TPH-CWG - Aliphatic >EC5 - EC6	MCERTS	4

Acenaphthylene	MCERTS	4	TPH-CWG - Aliphatic >EC6 - EC8	MCERTS	4
			TPH-CWG - Aliphatic >EC8 -		
Acenaphthene	MCERTS	4	EC10	MCERTS	4
			TPH-CWG - Aliphatic >EC10 -		
Fluorene	MCERTS	4	EC12	MCERTS	4
			TPH-CWG - Aliphatic >EC12 -		
Phenanthrene	MCERTS	4	EC16	MCERTS	4
			TPH-CWG - Aliphatic >EC16 -		
Anthracene	MCERTS	4	EC21	MCERTS	4
			TPH-CWG - Aliphatic >EC21 -		
Fluoranthene	MCERTS	4	EC35	MCERTS	4
			TPH-CWG - Aliphatic (EC5 -		
Pyrene	MCERTS	4	FC35)	MCERTS	4
	MOEDTO			MOEDTO	4
Benzo(a)anthracene	MCERIS	4	TPH-CWG - Aromatic >EC5 - EC7	MCERTS	4
Chrysene	MCERTS	4	TPH-CWG - Aromatic >EC7 - EC8	MCERTS	4
			TPH-CWG - Aromatic >EC8 -		
Benzo(b)fluoranthene	MCERTS	4	EC10	MCERTS	4
			TPH-CWG - Aromatic >EC10 -		
Benzo(k)fluoranthene	MCERTS	4	EC12	MCERTS	4
			TPH-CWG - Aromatic >EC12 -		
Benzo(a)pyrene	MCERTS	4	EC16	MCERTS	4
			TPH-CWG - Aromatic >EC16 -		
Indeno(1.2.3-cd)pyrene	MCERTS	4	EC21	MCERTS	4
			TPH-CWG - Aromatic >FC21 -		
Dibenz(a.h)anthracene	MCERTS	4	EC35	MCERTS	4
Development (altri) and a set	MOEDTO				
Benzo(gni)perylene	MCERTS	4			
Total PAH					
Speciated Total EPA-16]		
PAHs	MCERTS	4			

Heavy Metals / Metalloids Arsenic (aqua regia (aqua

(aqua

(aqua

extractable) Barium

extractable)

Beryllium extractable)

regia

regia

regia

MCERTS

MCERTS

MCERTS

4

4

4

5.0 GROUND CONDITIONS ENCOUNTERED

5.1 Overview of strata encountered

The sequence of deposits encountered during the investigation is detailed within the Engineering Geologist's logs presented in Appendix II and III. The following section summarizes the findings within the exploratory holes.

5.2 Detailed Ground Conditions

The general sequence of the ground conditions encountered varied between each trial pit as shown in Table 6 below.

Table 6: Summary of Strata encountered in exploratory holes in the Car Parl	K
---	---

General Strata Description	Depth of Strata mbgl						
	TP1	TP2	TP3	TP4	HP1	HP2	HP3
Topsoil	0.10	0.20	0.10	0.20	-	-	-
Made Ground	+1.50	+1.70	+1.30	+1.40	+1.20	+0.60	+0.90

+ Depth of strata not proven

-- Strata not encountered

Made Ground was encountered in all exploratory holes carried out on the site and comprised a range of materials from Mudstone and siltstone cobbles to purplish grey brown sandy gravelly cobble and boulders. Consisting of sandstone, mudstone, slag, brick and flint. The depth of Made Ground was not found on site due to the coarse nature of the material and significant instability of the trial pit sides preventing progress to depth.

5.3 Groundwater Conditions

There were no ground water strikes recorded within the exploratory holes on site.

Please Note: The groundwater conditions observed in these trial pits are those appertaining to the period of the investigation and monitoring. However, it should be noted that groundwater levels are subject to tidal diurnal, seasonal and climatic conditions or may vary due to other causes.

5.4 Visual & Olfactory Evidence of Soil Contamination

Made Ground was identified within the site area which contained slag material as seen in TP4 from 0.30mbgl. This may suggest possible heavy metal contamination in this area.

5.5 Visual & Olfactory Evidence of Groundwater & Surface Water Contamination

There was no evidence of any groundwater contamination or surface water Contamination during the investigation works.

6.0 GEOTECHNICAL ENGINEERING APPRAISAL

6.1 General

The purpose of this Ground Investigation and subsequent reporting is to determine and assess the existing shallow ground conditions on site in preparation for the construction of a new proposed development at the Barbecue, Ocean Square, Saundersfoot Harbour.

The main aims of the geotechnical investigation are to provide an assessment of the ground conditions to inform initial design of the foundations and determine chemical conditions in respect of below ground structures and confirm ground water levels within the working area.

6.2 Engineering Properties of Strata

The soils at the site comprised Made Ground of varying content with unknown thicknesses in the grassed picnic area adjacent to the Barbecue building.

The engineering properties each strata is summarised below:

6.2.1 Made Ground

The geotechnical laboratory results undertaken within the Made Ground are summarised in Table 7.

Clay		Range	No. Tests
Moisture Content	%	9.2 - 10	2
Sulphate as SO ₄	g/l	0.0070 – 0.011	2
рН	NA	8.2 - 8.4	2

Table 7: Summary of Clay Laboratory Test Results

6.3 Earthworks

All earthworks shall be carried out according to best practice and in accordance with BS 6031:2009 Code of practice of earthworks. Foundations should be constructed and designed in accordance with BS 8000-0:2014 Workmanship on Construction Sites, BS 8004:2015 Code of practice for foundations and BS EN 1997-1:2004+A1:2013.

6.3.1 Site Preparation

Prior to commencing the earthworks/ groundwork for the development, all live services on and in the vicinity of the site should be accurately located and protected or if required diverted. The ends of existing drains or sewers, which will be made redundant by the development, should be sealed in order to prevent any

residual or persisting seepages from adversely affecting the integrity and or stability of the formations/ foundations. Service conduits and surface voids resulting from the sites preparation works should be filled and well compacted with acceptable granular material (DoT Type 1 or similar approved).

Any exposed formations should be protected from the effects of the weather, site traffic, or water in order to prevent deterioration of this surface. It is recommended that any exposed formations be protected with a minimum thickness of 200mm of suitable granular material or a thin layer of blinding concrete, which should be placed immediately after excavation and exposure.

6.3.2 Excavation Plant

On the basis of the observations made during the exploratory investigation it is considered that excavations throughout the Made Ground can be undertaken using conventional excavation methods and plant.

6.3.3 Stability of Excavation Sides / Slope Stability

The exploratory holes undertaken within the grassed picnic area encountered granular Made Ground material. Due to the predominantly granular nature of the Made Ground deposits significant instability of the trial pit sides was encountered/experienced. Therefore any excavations undertaken are likely to experience instability and any excavations within the Made Ground are likely to require shoring or lateral support or be battered back to a suitable safe angle if left open for a sustained period of time.

6.3.4 Control of Groundwater

Groundwater was not encountered during the investigation in any of the exploratory holes. However it may be present at increased depths across the site. It is then considered unlikely groundwater will be encountered within the shallow excavations undertaken. It is anticipated sump pumping will be adequate for dewatering shallow excavations if groundwater seepage is encountered, or where surface water ingress occurs. Therefore groundwater is not a significant issue for the due to the proposed development, but should be taken into consideration if any work is to be carried out at depth.

6.4 Foundation Assessment

6.4.1 Foundation Recommendations

No precise details are available at present as regards foundation loads of the proposed footprints of the new structures. However we understand that the proposed development in the existing area will comprise a framed, relatively lightweight, structure.

Based on the findings of this ground investigation the Made Ground identified across the site will not provide a suitable founding stratum for conventional strip foundation, given its highly variable and loose nature. Given possible significant magnitudes of differential and total settlements may occur. As a result, a raft foundation should be suitable for the proposed structure.

A raft or pad foundation in conjunction with excavation /replacement ground improvement; i.e. excavation of the existing poor ground to 1.0mbgl and replaced with an engineered fill such as type 1. Alternatively it may be possible to re-use the existing material following selection/screening process, followed by placement in accordance with an appropriate earthworks engineering specification.

A piled/mini piled foundation system with a suspended floor slab is also a possibility. If a piled foundation solution is preferable, it is suggested further investigation is undertaken to establish the thickness of the Made Ground deposits and depth of competent soil or rock.

6.4.2 Foundation Concrete Class Designation

The Aggressive Chemical Environment for Concrete (ACEC) classification for the site has been assessed according to the guidelines within BRE Special Digest 1 (2005). For classification purposes, based on the BRE guidance, the groundwater must be classed as 'mobile' unless proven to be 'static' over a 24hr period.

The pH values of the soil samples taken from across the site ranged from 8.2 - 8.4, slightly alkaline conditions. The levels of water-soluble sulphate (SO₄) content of the tested soil samples varied between 0.011g/l (11mg/l) to 0.0077g/l (7.7mg/l).

Based on the above, the Design Sulphate (DS) class for the site is DS-1, and the Aggressive Chemical Environment for Concrete (ACEC) site classification is AC-1, assuming mobile groundwater conditions. The ACEC testing undertaken focused on the superficial deposits.

6.4.3 Pavement Design

In total 3No. CBR tests carried out across the site performed using a hand held TRL-DCP, undertaken from the surface. Table 8 details the results of the CBR testing.

Table 8: CBR Results

Location	Derived CBR Value (%)
CBR 1	6
CBR2	3
CBR3	7

Given the results of the CBR testing it is recommended a site wide CBR design value of 3% is assumed unless in-situ testing is undertaken within the zone of the proposed hard standing at formation depths to prove otherwise.

7.0 GEO-ENVIRONMENTAL CONSIDERATIONS

7.1 General

The following section assesses the findings of the geo-environmental laboratory results from samples obtained during the ground investigation. The risks to human health and the environment are both considered herein.

7.2 Human Health Risk Assessment Criteria

For the purposes of Quantum Geotechnical Ltd assessments, the most recent and applicable SGVs, GACs, SU4Ls and C4SLs are used based on site end use and development and overall suitability. These are all referenced within the text. SU4Ls take precedence in QGL assessments. Where these are not available or suitable, C4SLs are adopted.

By adopting the CLEA approach to human health risk assessment as defined in CLR11, a human health risk assessment has been undertaken for the proposed development adopting the least sensitive model of Commercial threshold values.

The assessment criteria used in this assessment is that presented by LQM/CIEH in their publication The LQM/CIEH S4ULs for Human Health Risk Assessment (2015). The S4ULs (Suitable for Use Levels) used have been derived in accordance with UK legislation, national as well as Environmental Agency policy and using a modified version of the Environmental Agency CLEA software and available guidance provided to the contaminated land practitioner community for the purpose of deriving Generic Assessment Criteria (GAC).

The LQM/CIEH S4ULs are intended for use in assessing potential risks posed to human health by contaminants in soil and as transparently derived and cautious 'trigger values' above which further assessment or remedial action may be necessary. By using the LQM/CIEH S4ULs, Quantum Geotechnical acknowledges Copyright Land Quality Management Ltd reproduced with permission; Publication Number S4UL3409. All Rights Reserved.

7.3 Pre-Intrusive Investigation Conceptual Site Model

A Pre-intrusive investigation Conceptual Site Model was identified with the Quantum Desk Study Report G40102/DS. The CSM is a representation of the current understanding of the site and its surrounding environment with regards to geology, groundwater, surface waters, and potential contamination on-site and adjacent off-site and any migration pathways.

The potential risks to the proposed development and adjacent land have been assessed by consideration

of the potential pollution linkages. For a risk to exist there must be a source of contamination, a receptor that may be harmed, and a pathway by which the receptor could be exposed to the contaminant. Only when all three factors are present (i.e. source, pathway, and receptor) can a pollution linkage, and consequently an unacceptable risk, exist. The conceptual site model considers all three elements and the potential for pollution linkages that may exist. If no linkage is identified then there is considered to be no or negligible risk.

The information gained from the land use desk study assessment has been collated to identify any potential pathways that may exist between any contamination source and its receptors. The Conceptual Site Model has been developed for the proposed end use. Receptors specific for the proposed end use considered in the assessment are as follows:

- Human Health end users
- Controlled Waters ground water and surface waters
- Buildings and Services

The main potential contamination source at the site is the possible Made Ground associated possible historic infilling of the site. Given the historical dock and railway use of the area, the material used for any re-profiling/infilling may be waste generated from the industrial processes. Due to the possible presence of potentially contaminated Made Ground across the site there may be a contamination source present on site. The risk of land contamination on site is considered medium.

Details of the pathways associated with each of the components are highlighted in the following set of tables:

Potential Sources onsite	 POSSIBLE MADE GROUND - Heavy Metals, Total Petroleum Hydrocarbons, Polycyclic Aromatic Hydrocarbons, and Asbestos. CONTAMINATED SOILS – Plant spillage/leaks 			
Potential Pathways on-site to o	Potential Pathways on-site to on-site Receptors onsite			
 Dermal contact with co Ingestion of soil, water of Inhalation of dust or lan organic soils. Leaching of contaminat Migration of groundwat Flooding of Zones 2/3 	ntaminated soils – dermatitis. or dust through ground maintenance etc. d gas emissions from Made Ground and red soils into groundwater. er across site.	Future Site End Users including Workers, Construction Workers and Visitors. Groundwater: – Bedrock: 'Secondary A' aquifer		
Chemically aggressive contaminants identified at raised concentrations.		Buildings and services.		

Table 9:	Existing	Pollutant	Linkages	on-site to	on-site

Table 10: Existing Pollutant Linkages on-site to off-site

Potential Sources onsite	POSSIBLE MADE GROUNI Polycyclic Aromatic Hydroca CONTAMINATED SOILS –	 D - Heavy Metals, Total Petroleum Hydrocarbons, rbons, and Asbestos. Historic spillage/leaks
Potential Pathways on-site to of	f-site	Receptors offsite
 Inhalation of dust or la Ground and organic so Leaching of contaminat Migration from groundw Migration of contaminal to potential dermal con inhalation of gas emiss Flooding of Zones 2/3 	nd gas emissions from possible Made ils. ed soils into groundwater. vater to surface waters. nts through groundwater off-site leading tact, ingestion of soil, water or dust and ions.	Neighbouring site users and occupiers Groundwater: – Bedrock: 'Secondary A' aquifer

Table 11: Existing Pollutant Linkages off-site to on-site

Potential Sources offsite	 POSSIBLE MADE GROUND - Heavy Metals, Total Petroleum Hydrocarbons, Polycyclic Aromatic Hydrocarbons, and Asbestos. HISTORIC SITE USES – Docks, Railway and tramway siding and tunnels. ELECTRICITY SUB STATION 		
Potential Pathways off-site to on-site		Receptors onsite	
 Inhalation of dust or land gas emissions from Made Ground and organic soils. Migration of contaminants through groundwater on-site leading 		Future Site End Users including Workers, Construction Workers and Visitors.	
to potential dermal cont inhalation of gas emissi • Flooding of Zones 2/3	act, ingestion of soil, water or dust and ons.	Groundwater: – Bedrock: 'Secondary A' aquifer	

The aforementioned CSM will be reviewed later in the report following assessment of the laboratory test results findings and information gathered from the intrusive investigation.

7.3.1 Soil Sample Test Results Comparisons

Heavy Metal and Inorganic Compounds

The results of levels of potential contaminants have been compared to generic assessment criteria as descried above, for a 'Commercial' end use as being considered the most appropriate threshold for human health. The test certificated are included in Appendix V. The concentrations of heavy metal and inorganic compounds are summarized in the Table 12.

Table 12: Summary	of Heavy	Metals an	d Inorganic S	oil Test Results
	ej neary	metals an	a morganic o	on rest nesures

Determinant	Results Range (mg/kg)	LQM/CIEH (2015) GAC (mg/kg) Commercial End Use ⁽¹⁾	Exceedances
	Made Ground		
Arsenic	14 - 38	640	0
(aqua regia extractable)			_
Boron	0.3 - 1.0	240,000	0
(water soluble)			
Cadmium	<0.2	190	0
(aqua regia extractable)			
Chromium	<4.0	8,600	0
(aqua regia extractable)			
Copper	10 - 64	68,000	0
(aqua regia extractable)			
Lead	39 - 130	2,300	0
(aqua regia extractable)			
Mercury	<0.3	1,100	0
(aqua regia extractable)			
Nickel	23 - 31	980	0
(aqua regia extractable)			
Selenium	<1.0	12,000	U
(aqua regia extractable)			
	40 - 120	730,000	U
(aqua regia extractable)			

Notes:

(1). GAC from LQM/CIEH S4ULs 2015. (2). GAC from LQM/CIEH 2009 & 2015. (3). GAC from DEFRA C4SL. (4). GAC from AtRisk adopting most sensitive end use for acute risk.

Polycyclic Aromatic Hydrocarbons

The results of levels of potential contaminants have been compared to generic assessment criteria as described, for a Commercial end use as being considered the most appropriate threshold for human health relating to handling of soils and for a Soil Organic Matter (SOM) content of 1%. The test certificates are included in Appendix V. The concentrations of speciated Polycyclic Aromatic Hydrocarbon are summarised and compared in the Table 13.

Determinant	Site Results Range (mg/kg)	LQM/CIEH (2015) GAC Commercial (mg/kg)	Exceedances	
		1% SOM		
Organic Matter	0.6-4.1			
Naphthalene	<0.05	190	0	
Acenaphthylene	<0.05	83,000	0	
Acenaphthene	<0.05	84,000	0	
Fluorene	<0.05	63,000	0	
Phenanthrene	<0.05-0.64	22,000	0	
Anthracene	<0.05	520,000	0	
Fluoranthene	0.32-1.1	23,000	0	
Pyrene	<0.05-0.97	54,000	0	
Benzo(a)anthracene	<0.05-0.77	170	0	
Chrysene	<0.05-0.57	350	0	
Benzo(b)fluoranthene	<0.05-0.65	44	0	
Benzo(k)fluoranthene	<.0.05-0.38	1,200	0	
Benzo(a)pyrene	<0.05-0.64	35	0	
Indeno(1,2,3-cd)pyrene	<0.05-0.31	500	0	
Dibenz(a,h)anthracene	<0.05	3.5	0	
Benzo(ghi)perylene	<0.05-0.34	3,900	0	

Notes:

(1). GAC from LQM/CIEH S4ULs 2015.

Total Petroleum Hydrocarbons

The results of levels of potential contaminants have been compared to generic assessment criteria as described, for a Commercial end use as being considered the most appropriate threshold for human health relating to handling of soils and for a Soil Organic Matter (SOM) content of 1%. The test certificates are included in Appendix V. The concentrations of speciated Petroleum Hydrocarbon are summarised and compared in the Table 14.

	Site Results Range (mg/kg)	LQM/CIEH (2 Residential without F	2015) GAC ⁽¹⁾ Plant Uptake (mg/kg)
Determinand		1% SOM	Exceedances
Organic Matter	0.6-4.1		
TPH – Aliphatic EC5-6	<0.001	3,200	0
TPH – Aliphatic >EC6-8	<0.001	7,800	0
TPH – Aliphatic >EC8-10	<0.001	2,000	0
TPH – Aliphatic >EC10-12	<1.0	9,700	0
TPH – Aliphatic >EC12-16	<2.0	59,000	0
TPH – Aliphatic >EC16-21	<8.0	1,600,000	0
TPH – Aliphatic >EC21-35	<8.0	1,600,000	0
TPH – Aromatic >EC5-7	<0.001	26,000	0

			,
TPH – Aromatic >EC7-8	<0.001	56,000	0
TPH – Aromatic >EC8-10	<0.001	3,500	0
TPH – Aromatic >EC10-12	<1.0	16,000	0
TPH – Aromatic >EC12-16	<2.0	36,000	0
TPH – Aromatic >EC16-21	<10	28,000	0
TPH – Aromatic >EC21-35	<10	28,000	0
TPH – Aromatic >EC5-EC35	<10	28,000	0

Notes:

(1). GAC from LQM/CIEH S4ULs 2015. (2). GAC for C16 – C35 only quoted.

Total Phenols

Total Phenols (monohydric) all recorded values of <1.0mg/kg in the Made Ground soil samples.

Asbestos

Asbestos identification undertaken on each of the samples tested recorded 'not-detected'.

7.4 Recommendations on Contaminated Land

7.4.1 Human Health Risks of Site End Users

No samples taken within the Made Ground across the site exceeded values when assessed against the criteria for commercial site end use. Therefore from the exploratory holes, the risk of contamination from potential sources affecting site end users is negligible and a significant risk is unlikely to exist.

7.4.2 Human Health Risks of Workers during Construction

The geo-environmental laboratory test results did not identify raised contaminant concentrations within the Made Ground material on the site, therefore the risk posed to construction operatives from chemical contaminants within the Made Ground/ shallow ground would be negligible.

However, operatives working with, or likely to come into contact with the Made Ground, should still observe particular precautions concerning personal hygiene. They should be issued with the appropriate personal protective equipment and should be instructed in safe working methods.

Instructions should be issued in the recognition of potentially hazardous materials including oily and odorous soil and water and also any discoloured or fibrous substances for example. Operatives should be warned to avoid contact between hands and mouth before washing. The consumption of food must be confined to designated clean areas with suitable welfare including washing facilities should be provided.

7.5 Review of Conceptual Site Model

Based on the Phase I Desk Study and the findings of the Phase II Investigation, no potential source-

pathway-receptor (S-P-R) linkages have been identified within the Made Ground deposits across the site.

With regards to risk to Human Health, a potential source is unlikely to exist on site and therefore the S-P-R linkage will not exist.

In addition, it is believed the proposed development will involve the construction of an impermeable hardstanding across the site and therefore if any unidentified contamination sources are present on site, the hardstanding layer will remove any pathway between source and receptor.

During the construction phase (and any future construction works that involve excavations), if Made Ground deposits are to be exposed, as the Made Ground was highly varied across the site and although considered unlikely, the potential of unidentified contamination exists and therefore a risk may exist to construction workers through dermal contact and neighbouring site users through wind-blown dust migration. Any pathways may be removed by the use of suitable PPE and suitable working methods which should include damping down of the Made Ground if dust creation could potentially occur.

In summary, no significantly elevated potential contaminant concentrations have been identified within the Made Ground samples tested and therefore a potential contamination source has also not been identified. Given the proposed development will involve the construction of hardstanding across the site any potential contamination will also be removed. It is therefore considered unlikely that significant risk to future site users from potential contamination that exists.

8.0 REFERENCES

British Geological Survey:

- British Geological Survey Sheet 228 Haverfordwest: 1:50,000 scale, Bedrock and Superficial edition
- BGS Lexicon of Named Rock Units (<u>www.bgs.ac.uk/lexicon</u>)
- BGS Geology of Britain Viewer (<u>www.bgs.ac.uk</u>)

Specialist Publications:-

- British Code of Practice BS 5930:2015 'Code of Practice for Site Investigations'
- British Code of Practice BS 1377:1990 'Methods of test for soils for civil engineering purposes'.
- British Code of Practice BS EN ISO 14688-1:2002+A2:2013 Geotechnical investigation and testing. Identification and classification of soil. Identification and description
- British Code of Practice BS EN ISO 14688-2:2004+A2:2013 Geotechnical investigation and testing. Identification and classification of soil. Principles for a classification.
- British Code of Practice BS EN ISO 14689-1:2003 Ground Investigation and Testing Identification and classification of rock
- Health and Safety Executive Guidance Note EH40/90
- CIRIA Report 143 'The Standard Penetration Test (SPT): Methods and Use', 1995.
- BRE (2005) Special Digest 1:2005, 3rd Edition, Concrete in aggressive ground. BRE, Garston.
- BS 6031:2009 Code of Practice for Earthworks.
- BS 8004:2015 Code of Practice for Foundations.
- BS 8000-0:2014 Workmanship on Construction Sites.
- BS EN 1997-1:2004+A1:2013 Eurocode 7: Geotechnical Design Part 1: General Rules
- Foundation design and construction / M.J Tomlinson; with contributions by R. Boorman 7th Edition 2001

APPENDIX I – SITE PLANS

The second secon		
₹ [†] [†]		
¢		
DRAWING TITLE: PLORATORY HOLE LOCATION PLAN	JOB NO. G40102 DATE 14/02/18	FIGURE NO. 1 SCALE NTS

APPENDIX II – HAND EXCAVATION PIT LOGS

Co Cl	ontract: lient: Sa	Ocea aunde	an Squ ersfoot	are, Saunde Harbour	ersfoot						Tria H	l Pit N P01	0.
Da	ites · 8/1/	18 - 8/1	/18		Job Nur	nber · G4010	2	Grou	nd Level :				
Lo	cation :				Enginee	r:	_	Coord	dinates:				
Ţ.	Samp	les		Tests				Strata					R
m B.G	Depth	Type No.	Depth	Test Results	Depth (Thick- ness)		Descr	iption		Le	egend	Depth (Thick- ness)	WATE
	- 0.50	- ES1 - ES2	G	oundwater: No G	0.03 0.03 0.05 0.08 0.04 0.12 0.18 0.30 - - 0.90	Concrete floor sl MADE GROUNI MADE GROUNI fine to coarse, sl MADE GROUNI gravelly CLAY. C brick, concrete, s @0.70-1.20 san	lab D: Weak brown D: ASPHALT D: Dark grey sligubangular to ar D: Soft dark gre Gravel is fine to slag, mudstone dy gravelly clay ated at 1.20mbg	CONCRETE ghtly sandy G gular, limesto y to brown sli coarse, round , ceramics an gl maximum d	RAVEL. Gr one (SUBB/ ghtly sandy ded to angu d sandston	avel ASE) Jlar, e.		(0.03) 0.03 (0.05) 0.08 (0.04) 0.12 (0.18) 0.30 (0.90) 1.20	
с	← 0.4 ↑ 0.3 ↓ C	B	St	ability: Stable noring: N/A									
Equ	ipment Used:	Vario	us insulate	ed hand digging to	ools								
	Quantum Geotechnical		Ty Be SA14 Tel: 0 Fax: 0 email	erwig, Bynea, Llanelli 9ST 11554744880 11554776750 : www.quantum-geotech.co.ul	k	Operator: KJ	Logged By. J Phillips	Sheet No. 1 Of 2	m Per Page 3	All measurer metres ur otherwise	ments in nless stated	AG	S

Contract: Ocean Square, Saund	ersfoot		Trial Pit No.
Client : Saundersfoot Harbour			HP01
Dates : 8/1/18 - 8/1/18	Job Number : G40102	Ground Level :	
Location :	Engineer :	Coordinates:	
DB NAME: CCENS SURRE, SPIN DB NUMBER: C40102 BOREHOLE NUMBER: UP BOX NUMBER: OC TROM (m): OO TO (m): TROM (m): OO			

Quantum
GeotechnicalTy Berwig, Bynea, Llanelli
SA14 9STOperator:
KJLogged By.Sheet No.GeotechnicalFax: 01554744880
Fax: 0155476750
email: www.quantum-geotech.co.ukKJJ Phillips2 Of 2

Co Cl	ontract :	Ocea	an Squa	are, Saunde Harbour	ersfoot					ŗ	Гria Н	l Pit No I P02	D.
	$\frac{1}{100} \cdot 0/1/1$		/12	Taiboui	Joh Nun	$abor \in C4010$	ົ າ	Grou	nd Level :				
Lo	cation :	10 - 9/1	1/10		Enginee	r:	2	Coord	dinates:				
	Sampl	les		Tests				Strata					¥
m B.G	Depth	Type No.	Depth	Test Results	Depth (Thick- ness)		Descri	ption		Leg	jend	Depth (Thick- ness)	WATE
	0.30 - 0.30 - 0.40	ES1 B2		oundwater: No G	0.03 0.12 0.15 0.08 0.42 0.65	Concrete floor sla MADE GROUNE CONCRETE MADE GROUNE fine to coarse, su MADE GROUNE gravelly CLAY ra rounded to angui and sandstone. (Hand Pit termina	ab 2: Weak brown 2: Dark grey slig ubangular to an 2: Soft dark grey re cobble conte lar, brick, concr Cobbles sub-rou ted at 0.65mbg	CONCRETE htly sandy G gular, limesto y to brown slis ete, slag, mu unded mudst	to strong gre RAVEL. Gra one (SUBBAS ghtly sandy dstone, cera one. • exposed	vel SE) se, mics		(0.03) 0.03 (0.12) 0.15 (0.08) 0.23 (0.42) 0.65	
0	← 0.4 A .3 D C	B	Sta	ability: Stable oring: N/A									
Equi	ipment Used:	Vario	us insulate	ed hand digging t	ools								
	Quantum Geotechnical		Ty Be SA14 Tel: 0 Fax: 0 email:	rwig, Bynea, Llanelli 9ST 1554744880 11554776750 www.quantum-geotech.co.u	k	Operator: KJ	Logged By. J Phillips	Sheet No. 1 Of 2	m Per Page 3	All measureme metres unle otherwise sta	ents in ess ated	AG	S

Form Name: TP LOG. Version 2.11.000, 22/05/15 Output By: JamesPhillips. Library File: F:\GINT\QUANTUMLIBRARY\QUANTUM 4.GLB.

Contract : Ocean Se	quare, Saunde	ersfoot						Trial Pit N	No.
Client : Saundersfo	ot Harbour							HP02	
Dates : 9/1/18 - 9/1/18		Job Numbe	r: G40102	2	Grou	nd Level :			
Location :		Engineer :			Coord	linates:			
	JOB NAME: CAR JOB NUMBER: CAR RIAL PIT NUMB	IN SQUEE, SIL			Sheet No.	SQURE DIOZ R: HPC	All measure		
Geotechnical	5A14 951 Tel: 01554744880 Fax: 01554776750 email: www.quantum-geotech.co.ul	k	KJ	J Phillips	2 Of 2	Page	metres u otherwise	nless stated	GS

C	ontract :	Ocea	an Squ	are, Saundo	ersfoot							Tria	l Pit N	0.
C	lient : Sa	aunde	ersfoot	Harbour								ŀ	IP03	
Da	ntes : 9/1/1	8 - 9/1	1/18		Job Nur	mber : G4010	2	(Groun	d Level :				
Lo	cation :				Enginee	er:		(Coordi	nates:				
Ţ.	Sampl	es		Tests				Strata	ı					R
m B.G	Depth	Type No.	Depth	Test Results	Depth (Thick- ness)		Descr	iption				Legend	Depth (Thick- ness)	WATE
-	-	-	-		- <u>0.05</u> - 0.05 - 0.25	TOPSOIL: Brown medium, sub-rou mudstone. MADE GROUNE	n sandy slightly inded to angula): Strong grey (gravelly ar, brick, CONCRE	CLAY concre	. Gravel finete and	ne to		(0.05) 0.05 (0.25)	
-	- - 0.40 - -	- - ES1 -	-		0.30 - - 0.35	MADE GROUNE CLAY. Gravel is sandstone, muds): Soft black an fine to coarse, stone, brick, co	d brown sub-rour ncrete, c	slightl nded to creamio	y sandy gr angular, s and slag	avelly g.		0.30 (0.35)	
-	-	-	-		-									
-	-	-	-		- 0.65 - 0.25	MADE GROUNE COBBLES. Grav sub-angular, mu): Grey and bro el is fine to coa dstone. Cobble	own sligh arse, sub es of sub-	itly clay p-round -angul	vey gravell led to ar, mudsto	y one.		0.65 <i>(0.25)</i>	
DI					0.90	Hand Pit termina	ted at 0.90mbg	gl due to	refusa	I			0.90	
PL	AN		Gr	oundwater: No G	roundwatei	r ∟ncountered		Remark	KS :					
($\begin{array}{c c} \bullet & 0.4 \\ \bullet & A \\ 0.3 \\ \bullet & C \\ \hline \\ \bullet & C \\ \hline \end{array}$	B	Sta	ability: Stable oring: N/A										
Equ	upment Used:	Vario	us insulate	ed hand digging t	ools									
	Quantum		Ty Be SA14 Tel: 0 Fax: 0 email:	rwig, Bynea, Llanelli 9ST 1554744880 11554776750 www.quantum-geotech.co.u	k	Operator: KJ	Logged By. J Phillips	Sheet 1 Of	No. f 2	m Per Page 3	All measure metre otherw	urements in s unless ise stated	AG	S S

Form Name: TP LOG. Version 2.11.000, 22/05/15 Output By: JamesPhillips. Library File: F:\GINT\QUANTUMLIBRARY\QUANTUM 4.GLB.

Contract: Ocean Square, Saund	ersfoot		Trial Pit No.
Client : Saundersfoot Harbour			HP03
Dates : 9/1/18 - 9/1/18	Job Number : G40102	Ground Level :	
Location :	Engineer :	Coordinates:	
	Image: And the second seco		

	Quantum Geotechnical	Ty Berwig, Bynea, Llanelli SA14 9ST Tel: 01554744880 Fax: 01554776750 email: www.quantum-geotech.co.uk	Operator: KJ	Logged By. J Phillips	Sheet No. 2 Of 2	m Per Page	All measurements in metres unless otherwise stated	A	- 6(
--	-------------------------	--	-----------------	--------------------------	---------------------	---------------	--	---	----------------

APPENDIX III – MACHINE EXCAVATED TRIAL PIT LOGS

Co C	ontract : lient · S:	Ocea	an Squ arsfoot	are, Saunde Harbour	ersfoot						Tria 1	l Pit N P01	0.
	1 + 1 + 1 = 1	18 - 8/1	1/18	That boat	Job Nu	mber · G4010	2	Grou	ind Level :				
Lo	ocation :	10 - 0/ 1	1/10		Enginee	er:	2	Coor	dinates:				
.T.	Samp	les		Tests				Strata					۲ ۲
m B.G	Depth	Type No.	Depth	Test Results	Depth (Thick- ness)		Desci	ription		ı	_egend	Depth (Thick- ness)	WATE
-	- - 0.20 - - -	- - ES1 -	-		0.10 0.10 0.20 0.30	TOPSOIL: Brown coarse, sub-rour sandstone. MADE GROUNE CLAY. Gravel is mudstone, sands MADE GROUNE cobble content. S rounded to angu of sub-rounded s	n sandy slightly nded to angula D: Soft black to fine to coarse, stone, brick, gl D: Brown grave Sand is coarse lar, brick, sand sandstone and	y gravelly CLA r, brick mudst o dark brown s , rounded to s ass and conc elly SAND with e. Gravel is fin dstone and mu mudstone.	Y. Gravel fir one and andy gravell ub-angular, rete. n occasional e to coarse, udstone. Cot	ne to		(0.10) 0.10 (0.20) 0.30	-
-	- 0.60 - 0.60 - 0.80 - 0.60 -	- ES2 B3 - D6 -	-		- 0.50	MADE GROUNE): Purplish bro le content. Sar	wn slightly gra	avelly SAND edium. Grav	with el is		0.50)	-
-1 - -	- 1.20 - 1.20 - 1.40	- - ES4 - -	-		0.70	fine to medium, i mudstone. Cobb	rounded to sub les of sub-rou	o-rounded sar	idstone and ne and muds	stone.		(0.70)	
-					1.50	Trial Pit terminat	ed at 1.50mbg	I due to collar	osing sides			1.50	
PL (AN -1.1 0.4 0.4 0 C C	► B 2T T-	Gr Sta Sh	oundwater: No G ability: Unstable c oring: N/A	roundwate	r Encountered ides		Remarks : Failed due t	Soakaway at to rapid out f	ttemptec low, una	d within Ible to fi	trial pit. Il pit.	
Equ	upment Used:	31 Ir	acked Min	II ⊨xcavator									
	Quantum Geotechnical		Ty Be SA14 Tel: 0 Fax: 0 email:	rwig, Bynea, Llanelli 9ST 1554744880 11554776750 www.quantum-geotech.co.ul	k	Operator: KJ	Logged By. J Phillips	Sheet No. 1 Of 2	m Per Page 3	All measur metres otherwise	ements in unless e stated	AG	l S

Client : Saund	dersfoot Harbour				Trial Pit No TP01
Dates : 8/1/18 - 8 Location :	8/1/18	Job Number : G401 Engineer :	102	Ground Level : Coordinates:	
		Highteen I			

Geotechnical Tel: 01554/44880 Fax: 01554776750 email: www.quantum-geotech.co.uk Form Name: TP LOG. Version 2.11.000, 22/05/15 Output By: JamesPhillips. Library File: F:\GINT\QUANTUMLIBRARY\QUANTUM 4.GLB.

C C	ontract: lient: Sa	Ocea aunde	an Squ ersfoot	are, Saundo Harbour	ersfoot					Tr	ial Pit N TP02	[0.
	$a_{\text{tes}} \cdot 8/1/2$	18 - 8/1	1/18		Job Nu	mber · G4010	2	Grou	nd Level :			
Lo	ocation :	10 - 0/	1/10		Enginee	er:	2	Coord	dinates:			
Ŀ.	Samp	les		Tests				Strata				Ĕ
m B.G	Depth	Type No.	Depth	Test Results	Depth (Thick- ness)		Descr	ription		Legend	Depth (Thick- ness)	WATE
-	-	-	_		0.10 0.10 0.10	TOPSOIL: Browr coarse, sub-rour sandstone. MADE GROUND	n sandy slightly nded to angula D: Light vellowi	y gravelly CLA r, brick mudsto sh brown sligh	Y. Gravel find one and htty clavey	e to $\frac{\sqrt{1}}{\sqrt{1}}$	(0.10) 0.10 (0.10)	-
-	- 0.40 - 0.40 - 0.60 - 0.40 -	- ES1 B2 - D6 -	-		0.20	gravelly SAND w content. Gravel is limestone, muds sub-rounded mu sub-rounded sar @1.30mbgl, 0.4 Gravel is fine to sandstone and s MADE GROUNE cobble content. (sandstone and n and mudstone.	with frequent cc s fine to coarse tone, slate and dstone and sa ndstone. Ocm lense of b coarse, sub-ro lag. D: Brown grave Gravel is fine to nudstone. Cob	bble content a e, rounded to d sandstone. Condstone. Boul black to brown unded to angu elly SAND with o coare, rounc bles of sub-ro	and rare boul sub-angular, Cobbles of ders of gravelly Clay ular, brick, occasional led to angula unded sands	Ider flint, y. Ir, stone	0.20	
- 1 - 1 -	- - - -	- ES3 - -	-		1.50 						(1.50)	
-	- 1.40 - 1.40 - 1.60 - -	- ES4 B5 -	-		1.70	Trial Pit terminat	ed at 1.70mbg	l due to collap	sing sides		1.70	-
PL	AN		Gr	oundwater: No G	roundwate	r Encountered		Remarks :				
(Equ	$\begin{array}{c c} \bullet & 1.2 \\ \bullet & A \\ 0.4 \\ \bullet & C \\ \hline \\ uipment Used: \end{array}$	B 3T Tr	Sta Sh racked Mir	ability: Unstable c oring: N/A i Excavator	collapsing s	ides						
	Quantum Geotechnical		Ty Be SA14 Tel: 0 Fax: (email	rwig, Bynea, Llanelli 9ST 1554744880 01554776750 www.quantum-geotech.co.u	k	Operator: KJ	Logged By. J Phillips	Sheet No. 1 Of 2	m Per Page 3	All measurements metres unless otherwise stated	in AG	J IS

Client: Saudersfoot Harbour Grund Level: Dates: 8/1/18 - 6/1/18 Engineer: Grund Level: Coordinates: Grund Level: Coordinates:	Contract : Ocean Square, Saund	ersfoot						Trial	Pit No.
Dates: 8/1/18 - 8/1/18 Job Number: Genual Level: Coordinates: Coordinates: Coordinates: Coordinates: Coordinates: Coordinates: Coordinates: Coordinates: Coordinates: Coordinates: Coordinates: Coordinates: Coordinates: Coordinates: Coordinates: Coordinates: Coordinates: Coordinates: Ordinates: Coordinates: Coordinates: Coordinates: Ordinates:	Client : Saundersfoot Harbour							T	P02
Location : Engineer : Cordinates:	Dates : 8/1/18 - 8/1/18	Job Number : G	40102		Gro	und Level :			
	Location :	Engineer :			Coo	rdinates:			
					N SQUARS , SPU (4) OIC SER: TPOZ OF: 10 (m):	n Per			
	Ty Berwig, Bynea, Llanelli SA14 9ST	Opera	ator:	Logged By.	Sheet No.	m Per	All measur	rements in	

	Quantum Geotechnical	Ty Berwig, Bynea, Llanelli SAI4 9ST Tel: 01554744880 Fax: 01554776750 email: www.quantum-geotech.co.uk	Operator: KJ	Logged By. J Phillips	Sheet No. 2 Of 2	m Per Page	All measurements in metres unless otherwise stated	AGS
--	-------------------------	--	-----------------	--------------------------	---------------------	---------------	--	-----

C C	ontract :	Ocea	an Squ	are, Saunde Harbour	ersfoot						Tria T	l Pit No P03	0.
				naibuui	Lab Mar		0	Gro	ınd Level ·				
L	ocation :	18 - 8/1	1/18		Enginee	mber: G4010. er:	2	Cooi	dinates:				
ij.	Samp	les		Tests				Strata					×
m B.G.	Depth	Type No.	Depth	Test Results	Depth (Thick- ness)	th ck- s) Description			1	Legend	Depth (Thick- ness)	WATE	
-	- - 0.20 - -	- ES1 -	-		0.10 0.10 0.20 0.30	TOPSOIL: Brown coarse, sub-roun sandstone. MADE GROUNE CLAY. Gravel is mudstone, sands MADE GROUNE is fine to coarse, of sub-rounded t	n sandy slightly ided to angular 2: Soft black to fine to coarse, stone, brick an 0: Grey and bro sub-rounded to o sub-angular,	/ gravelly CL/ r, brick, muds dark brown s rounded to s d concrete. wwn gravelly (o angular, m mudstone ar	AY. Gravel fi tone and andy gravel ub-angular, COBBLES. Col udstone. Col nd sandstone	Ily Gravel bbles e.		(0.10) 0.10 (0.20) 0.30	-
- - 	- - - - - -	- - B2 -	- - - - -		- 1.00							(1.00)	
					1.30	Trial Pit terminat	ed at 1.30mbg	I due to colla	osing sides			1.30	
	 1.1 A 0.4 D C 	B	Sta	ability: Unstable c	ollapsing s	ides		ixeniarKS .					
Eq	uipment Used:	3T Tr	acked Min	i Excavator									
	Quantum Geotechnical		Ty Be SA14 Tel: 0 Fax: (email:	rwig, Bynea, Llanelli 9ST 1554744880 11554776750 www.quantum-geotech.co.ul	k	Operator: KJ	Logged By. J Phillips	Sheet No. 1 Of 2	m Per Page 3	All measur metres otherwise	ements in unless e stated	AG	S

Contract : Ocean S	quare, Saundersfoot						Trial P TP('it No. 03
Dates : 8/1/18 - 8/1/18	Ioh Numbe	er · G4010	2	Grou	nd Level :			
Location :	Engineer :	. 04010	<u>_</u>	Coord	dinates:			
		AME: CZEN SA NUMBER: CHOR NUMBER: CHOR NUMER: CHOR N	ALERS SAUDERS FOT TO IMPI: 1.30 TO IMPI: 1.30 ALERS AND ALERS FOT TO IMPI: 1.30 ALERS FOT TO IMPI: 1.30 ALERS AND ALERS FOT TO IMPI: 1.30 ALER					
Quantum Geotechnical	Ty Berwig, Bynea, Llanelli SA14 9ST Tel: 01554744880 Fax: 01554776750 email: www.quantum-geotech.co.uk	Operator: KJ	Logged By. J Phillips	Sheet No. 2 Of 2	m Per Page	All measure metres u otherwise	ements in inless stated	AGS

	Quantum Geotechnical	SA14 9ST Tel: 015547744880 Fax: 01554776750 email: www.quantum-geotech.co.uk	Operator: KJ	Logged By. J Phillips	Sheet No. 2 Of 2	Page	All measurements in metres unless otherwise stated	A	<u> </u>	
--	-------------------------	---	-----------------	--------------------------	---------------------	------	--	---	----------	--

C C	ontract :	Ocea	an Squ	are, Saunde	ersfoot						Tria T	l Pit No P04	0.
				narbour	T 1 N	1 04040	0	Gr	und Level ·				
Da	ates : $8/1/1$	18 - 8/1	/18		Job Nur	mber: $G4010$	2		ordinates:				
	cation.				Enginee			0	fundes.				
Ŀ.	Samp	les		Tests				Strata				R	
m B.G	Depth	Type No.	Depth	Test Results	Depth (Thick- ness)		Descr	ription			Legend	Depth (Thick- ness)	WATI
- - - - - - - - - -	- 0.50	- ES1 B2 D3 		oundwater: No G	0.10 0.10 0.10 0.20 0.10 0.30 - - 1.10 1.40	TOPSOIL: Brown coarse, sub-rour sandstone. MADE GROUNE CLAY. Gravel is mudstone, sands MADE GROUNE coarse. Gravel is sandstone and n MADE GROUNE COBBLES with c coarse, rounded and flint. Cobble mudstone and sl	n sandy slightly ided to angula D: Soft black to fine to coarse, stone and brick D: Brown SANE a fine to coarse nudstone. D: Purplish grey occasional bou to angular, mu s of sub-round ag. Boulders c	y gravelly Cl r, brick, mud o dark brown rounded to D and GRAV e, rounded to y brown san ilder conten ed to sub-a of sub-round	AY. Gravel Istone and sandy grave sub-angular (EL. Sand is b angular, dy gravelly Gravel is fin dostone, slag ngular, sand ed sandston	fine to elly , ne to , brick stone, e.		(0.10) 0.10 (0.10) 0.20 (0.10) 0.30 (1.10) 1.40	
	← 1.3 ↑ A 0.4 D	B	Sta	ability: Unstable c	ollapsing s	ides							
For	vinment Used.	3T Tr	Sh acked Min	oring: N/A									
ĽЧ	upment Used.	51 11											
	Quantum Geotechnical		Ty Be SA14 Tel: 0 Fax: (email:	rwig, Bynea, Llanelli 9ST 1554744880 11554776750 www.quantum-geotech.co.ul	k	Operator: KJ	Logged By. J Phillips	Sheet No 1 Of 2	m Per Page 3	All measur metres otherwis	ements in unless e stated	AG	S

APPENDIX IV - TRL-DCP CBR RESULTS

Quantum Geotechnical

Ty Berwig Bynea, Llanelli. SA14 9ST Tel.: 01554 744880

Determination of Equivalent CBR using TRL Dynamic Cone Penetrometer DCP CBR Relationship based on Kleyn & Van Heerden (60° Cone) - TRL, DMRB HD 29/08 & TP 12

Client Name:	Saundersfoot Harl	aundersfoot Harbour							
Client Address:	Saundersfoot Harl	undersfoot Harbour Office, The Harbour, Saundersfoot. SA69 9HE							
Contract Name:	ract Name: Ocean Square				G40102				
Site Reference:	1	Lab. Reference:	1	Date Tested:	08.01.18				
Sample Location:	TRL 1			Date Received:	08.01.18				

Material Description:				
Supplier:	In-Situ		Source:	In-Situ
Depth Start of Test (m	m)	92mm b.g.l.	Tested By:	JP

CBR Relationship - TRL Equation Log_{10} (CBR) = 2.48-1.057* Log_{10} (Peneration Rate)

	Number	Number of BlowsPenetration (rStartFinishStartFinishStart		ion (mm)	Rate of Penetration	Equilavent	
Layer No.	Start			Finish	(mm/blow)	CBR (%)	Remarks
1	0	4	92	200	27.00	9	
2	4	21	200	415	12.65	21	
3	21	24	415	540	41.67	6	Terminated due to an obstruction sending off vertical

Signed: G.Morris

Position: Laboratory Manager

Dated: 26 January 2018

Quantum Geotechnical

Ty Berwig Bynea, Llanelli. SA14 9ST Tel.: 01554 744880

Determination of Equivalent CBR using TRL Dynamic Cone Penetrometer DCP CBR Relationship based on Kleyn & Van Heerden (60° Cone) - TRL, DMRB HD 29/08 & TP 12

Client Name: Saundersfoot Harbour							
Client Address:	Saundersfoot Ha	Saundersf	oot. SA69 9HE				
Contract Name:	Ocean Square			Contract No.:	G40102		
Site Reference:	1	Lab. Reference:	2	Date Tested:	08.01.18		
Sample Location:	TRI 2			Date Received:	08 01 18		

Material Description:					
Supplier:	In-Situ		Source:	In-Situ	
Depth Start of Test (mi	m)	115mm b.g.l.	Tested By:	JP	

CBR Relationship - TRL Equation Log_{10} (CBR) = 2.48-1.057* Log_{10} (Peneration Rate)

	Number	of Blows	Penetrat	ion (mm)	Rate of Penetration	Equilavent	
Layer No.	Start	Finish	Start	Finish	(mm/blow)	CBR (%)	Remarks
1	0	13	115	435	24.62	10	
2	13	15	435	510	37.50	7	
3	15	28	510	840	25.38	10	

Signed: G.Morris Position: Laboratory Manager Dated: 26 January 2018

Quantum Geotechnical

Ty Berwig Bynea, Llanelli. SA14 9ST Tel.: 01554 744880

Determination of Equivalent CBR using TRL Dynamic Cone Penetrometer DCP CBR Relationship based on Kleyn & Van Heerden (60° Cone) - TRL, DMRB HD 29/08 & TP 12

Client Name:	Saundersfoot Ha	Saundersfoot Harbour										
Client Address:	Saundersfoot Hai	aundersfoot Harbour Office, The Harbour, Saundersfoot. SA69 9HE										
Contract Name:	Ocean Square		Contract No.:		G40102							
			2			00.04.40						

Site Reference:	-	1	Lab. Refere	nce:	3	Date Tested:	08.01.18
Sample Location:	TRL 3					Date Received:	08.01.18
Material Description:							
Supplier:	In-Situ			Source:		In-Situ	
Depth Start of Test (mm)		100mn	n b.g.l.	Tested By:		JP	

CBR Relationship - TRL Equation Log_{10} (CBR) = 2.48-1.057* Log_{10} (Peneration Rate)

	Number of Blows		Penetrat	ion (mm)	Rate of Penetration	Equilavent	
Layer No.	Start	Finish	Start	Finish	(mm/blow)	CBR (%)	Remarks
1	0	8	115	435	40.00	6	
2	8	40	435	510	2.34	123	
3	40	44	510	840	82.50	3	

Signed: G.Morris Position: Laboratory Manager Dated: 26 January 2018

APPENDIX V – GEOTECHNICAL AND GEOENVIRONMENTAL LABORATORY TEST RESULTS

James Phillips Quantum Laboratories Quantum Geotechnical Ty Berwig Bynea Llanelli Carmarthenshire SA14 9ST

t: 01554 744880

e: JamesPhillips@quantum-geotech.co.uk

Analytical Report Number : 18-72670

Project / Site name:	Ocean Square, Saundersfoot	Samples received on:	12/01/2018
Your job number:	G40102	Samples instructed on:	12/01/2018
Your order number:		Analysis completed by:	22/01/2018
Report Issue Number:	1	Report issued on:	22/01/2018
Samples Analysed:	6 soil samples		

LAS Signed:

Jordan Hill Reporting Manager For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

soils	- 4 weeks from reporting
leachates	- 2 weeks from reporting
waters	- 2 weeks from reporting
aspestos	- 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Croxley Green Business Park, Watford, Herts, WD18 8YS

7 Woodshots Meadow,

i2 Analytical Ltd.

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

Project / Site name: Ocean Square, Saundersfoot

Lab Sample Number				887487	887488	887489	887490	887491
Sample Reference				TP01	TP01	TPO2	TP02	TP04
Sample Number				1	2	1	6	1
Depth (m)				0.20	0.60	0.40	0.40	0.50
Date Sampled				08/01/2018	08/01/2018	08/01/2018	08/01/2018	08/01/2018
Time Taken				None Supplied				
				Hone Supplied		Hone Supplied		Hone Supplied
		요드	í Č					
Analytical Parameter	S	imi	red					
(Soil Analysis)	its	ctio	itat					
		a n	ē					
			-					A 1
Stone Content	%	0.1	NONE	39	25	39	20	< 0.1
Moisture Content	%	N/A	NONE	11	11	9.1	10	14
Total mass of sample received	kg	0.001	NONE	2.0	2.0	2.0	0.81	2.0
	_							
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	-	Not-detected
General Inorganics				7.0				
pH - Automated	pH Units	N/A	MCERTS	7.3	8.1	8.4	8.4	8.1
Total Cyaniae	mg/kg	1	MCERTS	< 1	< 1	< 1	-	< 1
Water Soluble SO4 16br extraction (2.1 Leachate	mg/Kg	50	MICERIS	000	1200	290	-	020
	a/I	0 00125	MCEDIC	0.010	0.012	0.010	0.0070	0.015
Water Soluble SO4 16hr extraction (2:1 Leachate	9/1	0.00123	PICENTS	0.010	0.012	0.010	0.0070	0.015
Equivalent)	mg/l	1.25	MCERTS	-	-	-	7.0	-
Sulphide	mg/kg	1	MCERTS	< 1.0	5.1	< 1.0	-	48
Water Soluble Chloride (2:1) (leachate equivalent)	mg/l	0.5	MCERTS	-	-	-	2.1	-
Organic Matter	%	0.1	MCERTS	4.1	1.1	0.6	-	4.5
Total Organic Carbon (TOC)	%	0.1	MCERTS	2.4	0.6	0.3	-	2.6
Water Soluble Nitrate (2:1) as N (leachate equivalent)	mg/l	2	NONE	-	-	-	< 2.0	-
Total Phenols								
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	-	< 1.0
Speciated PAHs		-						
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	-	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	-	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	-	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	-	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	0.64	< 0.05	< 0.05	-	0.26
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	-	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	1.1	< 0.05	< 0.05	-	0.53
Pyrene	mg/kg	0.05	MCERTS	0.97	< 0.05	< 0.05	-	0.45
Benzo(a)anthracene	mg/kg	0.05	MCERTS	0.77	< 0.05	< 0.05	-	0.44
Chrysene	mg/kg	0.05	MCERTS	0.57	< 0.05	< 0.05	-	0.36
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	0.65	< 0.05	< 0.05	-	0.52
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	0.38	< 0.05	< 0.05	-	0.20
Benzo(a)pyrene	mg/kg	0.05	MCERTS	0.64	< 0.05	< 0.05	-	0.37
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	0.31	< 0.05	< 0.05	-	0.19
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	-	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	0.34	< 0.05	< 0.05	-	0.23
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	6.40	< 0.80	< 0.80	-	3.55
Heavy Metals / Metalloids			-					
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	23	14	31	-	38
Boron (water soluble)	mg/kg	0.2	MCERTS	1.0	0.5	0.3	-	0.9
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	-	< 0.2
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	-	< 4.0
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	19	17	19	-	14
Copper (aqua regia extractable)	mg/kg	1	MCERTS	51	25	10	-	64
Lead (aqua regia extractable)	mg/kg	1	MCERTS	130	43	39	-	110
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	-	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	30	31	29	-	23
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	-	< 1.0
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	120	52	40	-	71
Magnesium (water soluble)	mg/kg	5	NONE	-	-	-	6.1	-
Magnesium (leachate equivalent)	mg/l	2.5	NONE	-	-	-	3.1	-

Project / Site name: Ocean Square, Saundersfoot

Lab Sample Number	Lab Sample Number				887488	887489	887490	887491
Sample Reference	TP01	TP01	TP02	TP02	TP04			
Sample Number	1	2	1	6	1			
Depth (m)	0.20	0.60	0.40	0.40	0.50			
Date Sampled	08/01/2018	08/01/2018	08/01/2018	08/01/2018	08/01/2018			
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					

Monoaromatics								
Benzene	ug/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	-	< 1.0
Toluene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	-	< 1.0
Ethylbenzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	-	< 1.0
p & m-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	-	< 1.0
o-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	-	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	-	< 1.0

Petroleum Hydrocarbons

TPU 010 040		10		10	10	10		10
TPH C10 - C40	mg/kg	10	MCERTS	< 10	< 10	< 10	-	< 10
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	-	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	-	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	-	< 0.001
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	-	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	-	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	-	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	-	< 8.0
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10	-	< 10
-								
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	-	< 0.001
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	-	< 0.001
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	-	< 0.001
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	-	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	-	< 2.0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	< 10	< 10	-	< 10
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10	< 10	< 10	-	< 10
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10	-	< 10

Project / Site name: Ocean Square, Saundersfoot

Lab Sample Number		887492				
Sample Reference				7004		
Sample Number				1P04 3		
Denth (m)				0.50		
Date Sampled				08/01/2018		
Time Taken				None Supplied		
			A			
Analytical Parameter	c	Lir	st			
(Soil Analysis)	Inits	nit	dita			
(bon Analysis)	01	of	atio			
			3			
Stone Content	%	0.1	NONE	< 0.1		
Moisture Content	%	N/A	NONE	9.2		
	ку	0.001	INUINE	1.0		
Asbestos in Soil	Type	N/A	ISO 17025	-		
General Inorganics	-				 -	
pH - Automated	pH Units	N/A	MCERTS	8.2		
Total Cyanide	mg/kg	1	MCERTS	-		
I Utal Sulphale as SU4 Water Soluble SO4 16br extraction (2:1 Loochoto	mg/kg	50	MCERTS	-		
Equivalent)	g/l	0.00125	MCERTS	0.011		
Water Soluble SO4 16hr extraction (2:1 Leachate				21022		
Equivalent)	mg/l	1.25	MCERTS	11.3		
Sulphide	mg/kg	1	MCERTS	-		
Water Soluble Chloride (2:1) (leachate equivalent)	mg/l	0.5	MCERTS	2.9	 	
Organic Maller Total Organic Carbon (TOC)	%	0.1	MCERTS	-		
	70	0.1	MCLKTS	_		
Water Soluble Nitrate (2:1) as N (leachate equivalent)	mg/l	2	NONE	< 2.0		
Total Phenois			1405070			
Total Phenois (mononydric)	mg/kg	1	MCERTS	-		
Speciated PAHs						
Naphthalene	mg/kg	0.05	MCERTS	-		
Acenaphthylene	mg/kg	0.05	MCERTS	-		
Acenaphthene	mg/kg	0.05	MCERTS	-		
Fluorene	mg/kg	0.05	MCERTS	-	 	
Phenanthrene	mg/kg	0.05	MCERTS	-	 	
Fluoranthene	mg/kg	0.05	MCEDIS	-		
Pyrene	ma/ka	0.05	MCERTS	-		
Benzo(a)anthracene	mg/kg	0.05	MCERTS	-		
Chrysene	mg/kg	0.05	MCERTS	-		
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	-		
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	-		
Benzo(a)pyrene	mg/kg	0.05	MCERTS	-		
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	-	 	
Benzo(abi)pervlene	mg/kg	0.05	MCERTS	-		
benzo(ghi)bei yiene	TTI9/K9	0.05	MULKIJ	_		
Total PAH						
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	-		
Heavy Metals / Metalloids						
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	-		
Cadmium (agua rogia oxtractable)	mg/kg	0.2	MCEDITS	-		
Chromium (hexavalent)	mg/kg	4	MCERTS	-		
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	-		
Copper (aqua regia extractable)	mg/kg	1	MCERTS	-	 	
Lead (aqua regia extractable)	mg/kg	1	MCERTS	-	 	
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	-		
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	-	 	
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	-	 	
zinc (aqua regia extractable)	mg/kg	1	MCERTS	-		
Magnesium (water soluble)	ma/ka	5	NONE	7,3		
Magnesium (leachate equivalent)	mg/l	2.5	NONE	3.7		

Iss No 18-72670-1 Ocean Square, Saundersfoot G40102

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report are representative of the samples submitted for analysis.

Project / Site name: Ocean Square, Saundersfoot

Lab Sample Number		887492				
Sample Reference				TP04		
Sample Number				3		
Depth (m)	0.50					
Date Sampled	08/01/2018					
Time Taken	None Supplied					
Analytical Parameter (Soil Analysis)						
Monoaromatics						
Benzene	ug/kg	1	MCERTS	-		
Toluene	µg/kg	1	MCERTS	-		
Ethylbenzene	µg/kg	1	MCERTS	-		
p & m-xylene µg/kg 1 MCERTS				-		
o-xylene	µg/kg	1	MCERTS	-		
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	-		

Petroleum Hydrocarbons

					-	-		
TPH C10 - C40	mg/kg	10	MCERTS	-				
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	-				
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	-				
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	-				
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	-				
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	-				
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	-				
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	-				
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	-				
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	-				
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	-				
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	-				
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	-				
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	-				
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	-				
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	-				
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	-				

Project / Site name: Ocean Square, Saundersfoot

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
887487	TP01	1	0.20	Brown loam and sand with gravel and stones.
887488	TP01	2	0.60	Brown sand with gravel and stones.
887489	TP02	1	0.40	Light brown sandy clay with gravel and stones.
887490	TP02	6	0.40	Light brown sandy clay with gravel and stones.
887491	TP04	1	0.50	Brown loam and clay with gravel and clinker
887492	TP04	3	0.50	Brown loam and clay with gravel and clinker

Project / Site name: Ocean Square, Saundersfoot

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
BTEX and MTBE in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC- MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
Chloride, water soluble, in soil	Determination of Chloride colorimetrically by discrete analyser.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests. 2:1 extraction.	L082-PL	D	MCERTS
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	w	MCERTS
Magnesium, water soluble, in soil	Determination of water soluble magnesium by extraction with water followed by ICP-OES.	In-house method based on TRL 447	L038-PL	D	NONE
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically.	In-house method based on BS1377 Part 2, 1990, Chemical and Electrochemical Tests	L019-UK/PL	W	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	MCERTS
Organic matter (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	BS1377 Part 3, 1990, Chemical and Electrochemical Tests''''	L009-PL	D	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L099-PL	D	MCERTS
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP- OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests, 2:1 water:soil extraction, analysis by ICP- OES.	L038-PL	D	MCERTS

Project / Site name: Ocean Square, Saundersfoot

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Sulphide in soil	Determination of sulphide in soil by acidification and heating to liberate hydrogen sulphide, trapped in an alkaline solution then assayed by ion selective electrode.	In-house method	L010-PL	D	MCERTS
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests""	L009-PL	D	MCERTS
Total sulphate (as SO4 in soil)	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L038-PL	D	MCERTS
TPH Banding in Soil by FID	Determination of hexane extractable hydrocarbons in soil by GC-FID.	In-house method, TPH with carbon banding.	L076-PL	W	MCERTS
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method	L088/76-PL	w	MCERTS
Water Soluble Nitrate (2:1) as N in soil	Determination of nitrate by reaction with sodium salicylate and colorimetry.	In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN-82/C-04579.08, 2:1 extraction.	L078-PL	W	NONE

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.